quarta-feira, 5 de setembro de 2012

Descoberto carbono mais duro que diamante

Descoberto carbono mais duro que diamante

Amorfo e cristalino

É a primeira vez que se observa uma estrutura híbrida de carbono, mesclando uma bem ordenada fase cristalina com aglomerados amorfos. [Imagem: Li Wang et al./Science]
O quebradiço carvão, o escorregadio grafite e o valioso diamante são todos formados por carbono.
A diferença entre eles está na estrutura cristalina - o arranjo preciso dos átomos de carbono no diamante, por exemplo, faz dele o material natural mais duro que se conhece.
Agora, contudo, cientistas descobriram uma nova forma de carbono ainda mais dura do que o diamante.
Ao ser sintetizada, a nova substância riscou o diamante da bigorna usada no experimento.
Depois de estudar o material, Lin Wang e seus colegas da Instituição Carnegie, nos Estados Unidos, concluíram que ele é formado por uma mistura de fases cristalina e amorfa.
O novo material tem um variado campo potencial de aplicações, nas áreas de mecânica, eletrônica e eletroquímica.
Carbono híbrido
Esta é a primeira vez que se observa uma estrutura híbrida de carbono, mesclando uma bem ordenada fase cristalina com aglomerados amorfos, quando os átomos não seguem um padrão regular.
Os cientistas começaram o experimento com o carbono-60, também conhecido como buckball, uma estrutura oca formada por 60 átomos de carbono.
Os espaços entre essas nanobolas de carbono foram preenchidos com um solvente orgânico chamado xileno.
Descoberto carbono mais duro que diamante
O cristal de diamante puro, usado para pressionar a amostra, foi riscado por ela. [Imagem: Li Wang et al./Science]
A mistura foi colocada em uma bigorna de diamante, um dispositivo usado para submeter amostras a pressões muito grandes.
Conforme a pressão foi aumentando, as esferas de carbono-60 começaram a colapsar, criando aglomerados amorfos de carbono.
Contudo, como esses novos aglomerados amorfos continuaram ocupando o lugar em que estavam originalmente, criou-se uma rede cristalina cujos elementos constituintes são blocos amorfos.
Carbono superduro
O novo carbono superduro forma-se a uma pressão equivalente a 320.000 vezes a pressão atmosférica normal.
A boa notícia é que ele permanece estável depois que a pressão é retirada, abrindo o caminho para sua utilização prática.
Os cientistas verificaram que a retirada do xileno impede a formação do carbono superduro. Com base nisso, eles agora querem testar outros solventes, na esperança de encontrar novos tipos de materiais, eventualmente com características diferentes.
Bibliografia:

Long-Range Ordered Carbon Clusters: A Crystalline Material with Amorphous Building Blocks
Lin Wang, Bingbing Liu, Hui Li, Wenge Yang, Yang Ding, Stanislav V. Sinogeikin, Yue Meng, Zhenxian Liu, Xiao Cheng Zeng, Wendy L. Mao
Science
Vol.: 337 no. 6096 pp. 825-828
DOI: 10.1126/science.1220522

Novo material extrai urânio da água do mar


Mineração líquida
A mesclagem de um composto adsorbente com fibras de polietileno muito finas resultou em um material capaz de extrair seletivamente metais dissolvidos na água.
Os cientistas do Laboratório Nacional Oak Ridge, nos Estados Unidos, testaram o material para extrair nada menos do que urânio da água do mar.
O novo material, batizado de HiCap, superou largamente todos os adsorventes existentes - adsorção é a retenção de moléculas, átomos ou íons, por um material sólido, devido a uma afinidade - neste caso química - entre o material adsorvente e a substância adsorvida.
Além de viabilizar essa "mineração líquida", os cientistas afirmam que o material poderá ter aplicação na remoção de poluentes e metais pesados de águas poluídas.
Urânio no mar
"Nós demonstramos que nossos adsorventes podem extrair de cinco a sete vezes mais urânio, em uma velocidade sete vezes maior do que os melhores adsorventes do mundo," disse Chris Janke, um dos inventores do material.
Segundo ele, isso traz esperanças de alimentar reatores nucleares com urânio coletado a partir da água do mar.
Estima-se que haja 4,5 bilhões de toneladas de urânio dissolvidos na água do mar.
Embora a concentração do elemento nos oceanos seja de apenas 3,2 partes por bilhão, há urânio dissolvido suficiente para alimentar todos os reatores nucleares do mundo por 6.500 anos - caso não sejam todos desativados antes.
Redação do Site Inovação Tecnológica - 28/08/2012

Adsorvente seletivo
O material é feito de fibras muito finas, resultando em áreas superficiais muito grandes, o que é importante para entrar em contato com o maior volume possível de água.
"Nosso adsorvente é feito submetendo as fibras de polietileno a uma radiação ionizante, e então fazendo essas fibras pré-irradidas reagirem com compostos químicos que têm uma forte afinidade com o metal que se quer coletar," explicou Janke.
Após a coleta, o metal é retirado do adsorvente usando um método simples, de precipitação em solução ácida.
O material pode ser reutilizado, mediante um tratamento com hidróxido de potássio.
Metais do mar e do lixo eletrônico
Nos testes, o material coletou 146 gramas de urânio por quilograma, mas partindo de soluções bem mais concentradas do que a água do mar, contendo 6 partes por milhão de urânio. O melhor resultado obtido anteriormente era de 22 gramas por kg.
Pesquisadores de vários países trabalharam por décadas em busca de tecnologias para extrair urânio da água do mar. Mas esta talvez ainda não seja a solução ideal: os pesquisadores calcularam que 1 kg de urânio extraído da água do mar por esse processo custaria US$660, cerca de cinco vezes mais caro do que o mineral extraído das minas terrestres convencionais.
Ainda assim, o material poderá ter outros usos.
Mesmo não tendo sido testado especificamente para esse fim, o novo material traz também novas esperanças para a reciclagem do lixo eletrônico, uma verdadeira mina de metais e outros elementos, mas cuja extração, a partir dos produtos eletrônicos descartados, ainda é tecnicamente inviável.